

OREILLY"

Thinking
Architecturally

Lead Technical Change Within
Your Engineering Team

nttps://content.pivotal.io/
ebooks/thinking-architecturall

'
>

Nathaniel Schutta

https://content.pivotal.io/ebooks/thinking-architecturally
https://content.pivotal.io/ebooks/thinking-architecturally

Ah "the cloud!”

So. Many. Options.

For better or worse...

Many developers think:
cloud === microservices.

| ot of time spent on
domain driven design.

| ooking for bounded contexts...

Detining a ubiquitous language.

-rorming two pizza teams.

"“Your [developers] were so
preoccupied with whether they could,
they didn't stop to think it they should.”

-lan Malcolm

And that has led to
some serious pain.

- \.‘

r
e AR A\R AW A ?.’."’

ST RS

QAN

‘-“ »

)

1 i
- " b""

- - mramilp PV
L

-

A2

— A\ -
-

e S

. .‘..; N
v W5 -
-t “ ’6‘

-
, -
L
WA

/’/‘5’7" .“, 'l e

A9

7] ‘,‘c

=
v ANY

-
A

5

~
S

—
e A%
\/ S e
\ 4
/

<3
A

'Q
: /
e 2 LTSN

r

4
8
N

§
¥

WSSy

V7 ,/;;"I/_’.’

4".,’ ,
”l/

S "

‘\ N ’) ', R 4 ..t ' P - ~ Y - » -'.'.' - " iy s J

- . » > -) = -' '.’, ;. » - . ’~ - _ . ’ - ,‘.'. 'a

\\~ \‘.".“\" ' . ‘\ - r 1 -. N 0 5) - . . » - v & o ' '/-. . J /' -//-'"."/l' /f;
: - - 5 - . A -:'_ - . - 4

-
'2' -
_
.

- n
-

X\\N

. B SARAS

RSN

CTAVER W\ AT LS
\

‘,\". \\\‘

-

. ya
MR Y !
- \\R N

— ~
-

N U O

e Y N .

SO A

/‘., X , 3 ",- /"" '.:'a‘
NI
Ze4

/

..l"‘.\‘ - T W
Th B ASE

S B

W e B S AN
- e— -
"
'

//evolutionaryarchitecture.com

http

http://evolutionaryarchitecture.com

Oops.

There are a number of good
reasons to adopt microservices.

But there are no free lunches.

We have to consider the cost of
the added complexity.

Does your application
actually benefit?

Or are you just adding
accidental complexity?

When should we
consider microservices?

Please Microservice Responsibly.

https://content.pivotal.io/blog/should-that-be-a-

microservice-keep-these-six-tactors-in-mind

https://content.pivotal.io/blog/should-that-be-a-microservice-keep-these-six-factors-in-mind
https://content.pivotal.io/blog/should-that-be-a-microservice-keep-these-six-factors-in-mind

NA | CROSERVICES

Reaction to monoliths anao
heavy weight services.

As well as cloud environments.

Monoliths hurt.

Developer productivity takes a nit.

Hard to get your head wrapped
around a huge code base.

Long ramp up times
for new developers.

Small change results in building
and deploying everything.

Scaling means scaling the
entire application!

Not just the part that
needs more capacity.

Hard to evolve.

We're all familiar with the secono
law of thermodynamics...

Otherwise known as a
teenagers bedroom.

The universe really
wants to be disordered.

Software is not immune
from these forces!

Modularity tends to
break down over time.

Over time, takes longer to
add new functionality.

Frustration has given birth to a
"new"” architectural style.

Fnter the microservice.

No “one” definition.

In the eye of the beholder...

him who is without syn v
@littleidea

who wants to argue about the definitions for made up words
with me?

2:45 PM - Aug 14, 2014

9 Retweets 18 Likes

O () 4 ¥

https://mobile.twitter.com/littleidea/status/500005289241108480

https://mobile.twitter.com/littleidea/status/500005289241108480

Anything that can be
rewritten two weeks or less.

Think in terms of characteristics.

Suite of small focussed services.

Do one thing, do it well.

Linux like - pipe simple things
together to get complex results.

Independently deployable.

Independently scalable.

Fvolve at different rates.

Freedom to choose the
right tech for the job.

Built around business capabilities.

High cohesion, low coupling...

Applied to services.

t is just another approach. An
architectural style. A pattern.

)

b
.

3

3
3

:

Despite what some
developers may have said.

4 U NP SN
M L o e Dbl B,

p.v.mvz vl

AVE BN B

. .v .\. \
A.lvu\.w

oy e
N

PR e e

g ...&4-;
g . i

X . 9 -
T Oy T W YT LMY A T TR e g ..

‘
TE

. P L

Use them wisely.

"It you can't build a monolith, what makes
you think microservices are the answer?”

-Simon Brown

http://www.codingthearchitecture.com/2014/07/06/
distributed big balls of mud.htm|

http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html

Sometimes the right answer is a
modular monolith...

https://www.youtube.com/watch?v=kbKxmEeuvc4

https://www.youtube.com/watch?v=kbKxmEeuvc4

Some parts of your system
change all the time.

Others haven't changed
in months. Or years.

't parts of your system evolve at
different speeds...

You might need microservices!

For your consideration...the
Widget.io Monolith!

-

Recommendation

~

Engine
\- J
4)
Cart
\- J

Widget.io Monolith

4)

Order Processing

Search

_ /
4)
Inventory
_ /

Account
Administration

The Cart module probably
doesn’t change much.

Maybe the Inventory
system is really stable.

But our product owners constantly
tweak the Recommendation Engine.

And we are always
improving Search.

In a monolith, everything has to
move at the same rate.

Why a quarterly release?

Because that is when all the
changes were ready.

And since we had to push the
entire monolith anyway...

Today we have options.

Splitting them out allows us to
iterate those features faster.

Widget.io Monolith

N
Account
Administration
J
N
Cart

[

_

Order Processing

~N

J

[

Inventory

~N

4)
Recommendation
Engine
Microservice
__ ,
4)
Search
Microservice
__ ,

Fnables us to deliver
pusiness value quickly.

How do we find the components
that change far faster than the rest?

You probably have an inkling
already in your systems.

Trust your gut instincts!

But it can be very helpful to
have, well some data.

Start with your source code
management tool...

You can get a "heat map” of
sorts just by looking at history.

glit log —--pretty=format: --name-only |
sort | unig -¢ | sort -rg | head -10

Running that against Spring...

(Not a monolith but tor
pedagogical reasons...)

12. nschutta@Firethorn: ~/work/spring/spring-framework (zsh)

spring-framework (master) » git log --pretty=format: --name-only | sort | uniq -c
| sort -rg | head -10
15983

991 build.gradle

239 src/asciidoc/index.adoc

187 build-spring-framework/resources/changelog. txt

129 spring-core/src/main/java/org/springframework/core/annotation/AnnotationUtils
NEVE

119 src/dist/changelog. txt

106 spring-beans/src/main/java/org/springframework/beans/factory/support/DefaultL
istableBeanFactory. java

96 spring-webmvc/src/main/java/org/springframework/web/servlet/config/annotation
/WebMvcConfigurationSupport. java

94 spring-context/src/main/java/org/springframework/context/annotation/Configura
tionClassParser. java

94 org.springframework.core/src/main/java/org/springframework/core/convert/TypeD
escriptor. java
spring-framework (master)

Gives you a place to start.

Software archeology time!

Roll up your sleeves and root
around your codebase.

| ook for (apologies Isaac Newton)
smoother pebbles and prettier shells.

| ook for what Michael
Feathers coined “churn”.

https://www.stickyminds.com/article/getting-empirical-about-refactoring

https://www.stickyminds.com/article/getting-empirical-about-refactoring

Where should we refactor?

When you look at your project,
there will be a “long tail.”

Some files are updated constantly,
others just initial commit.

Chad Fowler created Turbulence
pased on churn vs. complexity.

https://github.com/chad/turbulence

https://github.com/chad/turbulence

There are "code forensic” tools
we can leverage as well.

CodeScene.

https://codescene.io/about

https://codescene.io/about

& codescene.io

CODESCENE @, Plans & Documentation % Log in

CLOUD

SCOPE

HOTSPOTS CODE BIOMARKERS AUTHORS

DOCKER

224,787 Lines of Code 5 5% D 0.0 Months
Dashboard 185 334 Lines of Go Red Hotspots Current Indication Median Contribution
Scope 1270 Authors 14 . 3% D 57 Months
Technical Debt Development Effort Last Month Longest Contribution

56 Active Authors

TR in Red Hotspots

D

.. N 16289 C it
Social Analyses ommEES 29% Last Year

Project Management of Estimated Bugfixes in
the Hotspots

ase Pricing Support B

& codescene.io

CODESCENE @, Plans & Documentation % Log in

CLOUD

L a3)
U1l LET

DOCKER
Hotspots Refactoring Targets Code Age Defects Programming Language

System
Dashboard y

A W docker
Technical Debt

Hotspots

Architecture

Social Analyses

Project Management

docker

ase Pricing Support w2

& codescene.io

CODESCENE &, Plans & Documentation %) Log in

CLOUD

DOCKER
Hotspots Refactoring Targets Code Age Defects Programming Language

System docker
Dashboard
Scope stream
Technical Debt
stream archive.go

Hotspots

container.go

container_linux.go

state.go
cohtainer_windows. go _)
container_notlinux.go
Architecture health.go
. Aralye — . archive.go container_unit_test.go
Social Analyses . ;
‘) : monitor.go
Project Management / A\ store.go container_unix.go
/ \ view_test.go
container_uniX.go Imemory_store.go env.go container_windows. go
env_test.go env.go

env_test.go

~— _ ____ memory_store_test.go state_test.go

container_unit_test.go health.go
f view.go K history.go
memory_store.go
memory_store_test.go
monitor.go
mounts_unix.go
mounts_windows. go

state.go

About

& codescene.io

CODESCENE &, Plans & Documentation %) Log in

CLOUD

DOCKER

Hotspots Refactoring Targets Code Age Defects Programming Language
System docker container
’\ / Code Biomark
Scope Size 811 Lines of Code D""" -
Technical Debt
stream Change Frequency 804 Commits
Hotspots
Main Author Michael Crosby (16 %)
Knowledge Loss @ % Abandoned Code
state.go
cohtainer_windows. go Defects 184 (22 % Bug Fixes)
Architecture health.go Last Modified @ months ago
Social Analyses | R ;
' | z monitor.go l\ .
Project Management store.go ctions
/ \ view_test.go
container_unix-go memory_store.go env.go View Code X-Ray
env_test.go Trends Authors v

e *“"£ _'47‘__ memory_store_test.go state_test.go

Complexity Trend

container_unit_test.go

view.go

& codescene.io

CODESCENE @, Plans & Documentation % Log in

CLOUD

oeKER X-Ray File Results

Projects docker Files docker/container/container.go

Dashboard

Scope Hotspots Internal Temporal Coupling Structural Recommendations

Technical Debt

Architecture > Function +« Change Frequency v Complexity/Size Cyclomatic Complexity

Social Analyses BuildCreateEndpointOptions 30 173 46 2 | <

Project Management
SetupWorkingDirectory 29 28 13 | & <
StartLogger 27 47 12 & | <P
GetResourcePath 24 16 4 | l” | <
ShouldRestart 24 ‘ 1 l”” | <
AddMountPointWithVolume 20 16 1 | l” | <
NewBaseContainer 20 11 1 & | <
FromDisk 19 28 8 | l” | <
BuildJoinOptions 17 17 6 2 | <
startlLogging 15 17 5 | l” | <
StdoutPipe 12 3 1 l”” | <
StderrPipe 12 3 1 | l” | <
BuildEndpointInfo 11 47 14 & | <

ase Pricing Support L Copyright © 2015-2019

CODESCENE

CLOUD

DOCKER

/<T o]
Q , ‘[»
Technical Debt

Hotspots

Complexity Trend

Hotspots docker/container/container.go

Complexity (ws)

3,500 -
3,000 -
2,500+
2,000
1,500
1,000

500

-

Complexity Trend

& codescene.io

Complexity

—eo®—o—e| ines of Code

. —~——

I
2014

Descriptive Statistics

Complexity vs. Lines of Code

|
2015

[
2016

!
2017

!
2018

Code Comments

CodeScene

&, Plans

& Documentation

% Log in

& codescene.io

CodeScene

CODESCENE Q: Plans & Documentation % Log in

CLOUD .

Measure how well your organization aligns with your architecture.

Authors Teams Knowledge Loss Coordination Needs Technical Sprawl ® Unassigned
® Docker

System Integration CLI ® Microsoft
Size 34475 Lines of Code
Primary Author Vincent Demeester (10 %) ®
Architecture
Primary Team Unassigned (66 %) ®
Knowledge Loss @ % Abandoned Code

Conway's Law
Team Fragmentation 0.48 (0.0 -> 1.0)

Number of Teams 5

Actions

Authors

Who is working on what?

CODESCENE

CLOUD

DOCKER

Technical Debt
Architecture

Social Analyses

Individuals

roject Management

Owners Knowledge Loss

O
e
...c... .: .
‘,1.

oo

)

o
@ % ;

& codescene.io

o
int®ration-cli

reg}:itry

®e coéiper

o int@®hal

shatke ofty "

:... - @ .» brofiles SR L

dist“ob tion refd@encecii PIUGIN
: (RO

0 _s*
..o,o,. cm"contribg._:.
Y .

.2
vodumelp

o o
: &‘o’:og ."‘39.*"‘
* SEe3 lmage ’.’ 5 '.;.2 .,
..o'.. ‘oo » ‘ese .) -
iqtéy?a tion Yo (732
¢ api @
o a 304
buo%,e;o X
. .2‘:... o.....'..
e e

Coordination Needs

CodeScene

System

W api

W builder

W cli

W client

= cmd

M container

W contrib

2 daemon

W distribution
2 dockerversion
W errdefs

W hack

M image

M integration
M integration-cli
W internal

W layer

W libcontainerd

&, Plans

& Documentation %) Log in

® Michael Crosby

® Brian Goff

® John Howard (VM)
© Vincent Demeester
® Daniel Nephin

© Tonis Tiigi

® David Calavera

® Aaron Lehmann

® Yong Tang

® Derek McGowan

© Tibor Vass

® Akihiro Suda

® Kenfe-Mickaél
Laventure

® Alexander Larsson
© Ahmet Alp Balkan
® Allen Sun

® Josh Hawn

® Sebastiaan van Stijn
© Evan Hazlett

® Guillaume J. Charmes

& codescene.io

CodeScene

CODESCENE @, Plans & Documentation % Log in

CLOUD

DOCKER

Owners Knowledge Loss Coordination Needs ® Michael Crosby
® Brian Goff
System docker client ‘ ' ® John Howard (VM)
© Vincent Demeester

_ . ® Daniel Nephin
Size 167 Lines of Code © Ténis Tiigi

Dashboard

Scope

Technical Debt ® David Calavera

Architecture e ® Yong Tang
-9 Knowledge Loss @ % Abandoned Code ® Derek McGowan
Social Analyses ® Tibor Vass
. | B roate AR Fragmentation 0.68 (0.0 -> 1.9) ® Akihiro Suda
plugi 11 ® Kenfe-Mickaél
, lume est, go Number of Authors 23 Laventure

® Alexander Larsson
© Ahmet Alp Balkan

Individuals plugin est.
- alne
est

image_ ACtlonS ® Allen Sun
.’Vlce.pect go ® Josh Hawn
® Sebastiaan van Stijn
ret_create, tes : _
Project Management networ est. go ‘ con View Code Authors -2 BB

® Guillaume J. Charmes

1ld pru
ti

' r
o node i ct ‘
9 ‘u‘oa
6 pIU‘

nsp

o, e ﬁ:b
fg : ®
0‘0 iy
Q “"° QQQ‘ &
Ot 1 Y
PO -®0 0 Q -

ask _logs.go ,
. ‘» test
mfb : o -
. . ntain est.go
ice updat 0

contai

containe ‘.

secret list_tes
volume ‘
conf 19.

RS
_1r LA

swarm_ 1 _test.go

network test. go

image i

ppenl— containe

image st. g

contam"

test.go

wcase Pricing Support Copyright © 2015-2019

Maybe you don’t want to leverage
something like CodeScene.

Once again we can turn
to our SCM tool.

O Why GitHub? Enterprise Explore Marketplace Pricing Sign in ‘Sign up|

.- spring-projects / spring-framework ® Watch = 3,366 % Star 26,745 ¥ Fork 17,073
<> Code Issues 708 Pull requests 183 Projects 0 Wiki Insights
Branch: master ~ Create new fils Find file = History

spring-framework / spring-core / src / main / java / org / springframework / core / annotation /

%‘ jhoeller Polishing Latest commit 106a757 12 days ago
=) AbstractAliasAwareAnnotationAttri... Fix overridden methods nullability 2 years ago
=) AliasFor.java Polishing 4 years ago
=) AnnotatedElementUtils.java Clean up warning in AnnotatedElementUtils 6 months ago
=) AnnotationAttributeExtractor.java Consistent use of @nullable across the codebase (even for internals) 2 years ago
E) AnnotationAttributes.java Polishing 12 days ago
=) AnnotationAwareOrderComparator.... Correctly delegate to OrderUtils.getPriority for DecoratingProxy 10 months ago
=) AnnotationConfigurationException.... Exception fine-tuning and general polishing 4 years ago
=) AnnotationUtils.java Consistently skip unnecessary search on superclasses and empty elements 6 months ago
=) DefaultAnnotationAttributeExtracto... Fix overridden methods nullability 2 years ago
=) MapAnnotationAttributeExtractor.ja... Fix overridden methods nullability 2 years ago
=) Order.java Polishing ayearago
=) OrderUtils.java Pruning of outdated JDK 6/7 references (plus related polishing) 7 months ago
=) SynthesizedAnnotation.java Make SynthetizedAnnotation public 4 years ago
=) SynthesizedAnnotationlnvocationH... Consistent alias processing behind AnnotatedTypeMetadata abstraction ... 3 years ago
=) SynthesizingMethodParameter.java MethodParameter supports Java 8 Executable/Parameter and validates pa... 3 years ago

=) package-info.java Ensure all files end with a newline 8 months ago

| ast commit around the Super
Blue Blood Moon Eclipse?

Probably not a great candidate
for microservices then!

Find a spot that "always be
changing”? Dig deeper!

| ook at your bug tracker -
look for defect density.

L ook at your backlog. Where
s the locus of attention?

We have some gooa
candidates...now what?

The Strangler Pattern to the rescue.

@ o) -
10 yr repost of Strangler Application: using
event interception and asset capture to
replace legacy app

e

bliki: StranglerApplication

Inspired by the strangler vines that cover fig trees in Australia, a strangler application
gradually draws behavior out of its host legacy application by intercepting events...

martinfowler.com

8:30 AM - 30 Jun 2014

32 Retweets 33Likes @ Q s Q ‘ ‘) e @ e

Q 2 1 32 ¥ B &

https://twitter.com/martinfowler/status/483603425008304129

https://twitter.com/martinfowler/status/483603425008304129

Strangler Application.

https://martinfowler.com/bliki/StranglerApplication.html

https://martinfowler.com/bliki/StranglerApplication.html

In a nutshell build the new
around the edges of the old.

Gradually replace
the heritage Dbits.

Reduces the risk of a
pig bang cutover.

Incrementally improve delivering
pusiness value as you go.

Able to show regular
orogress to stakeholders.

We can go a step further and
apply a data driven approach.

What would you say the old
system does exactly?

Odds are we don’t understand
all the nuance of the old bits.

| eads to bugs, no one knew
about that edge case...

What it we had real world data”?

Chase Gregory v
@GregChase

Use the data driven strangler pattern when business logic
of the legacy system is unknown and accuracy is critical
#SpringOne

8:13 PM - Dec 6, 2017 - Twitter for iPhone

https://mobile.twitter.com/GregChase/status/938592224924725248

https://mobile.twitter.com/GregChase/status/938592224924725248

Put a proxy layer between the
client and the legacy system.

https://content.pivotal.io/slides/strangling-the-monolith-
with-a-data-driven-approach-a-case-study

https://content.pivotal.io/slides/strangling-the-monolith-with-a-data-driven-approach-a-case-study
https://content.pivotal.io/slides/strangling-the-monolith-with-a-data-driven-approach-a-case-study

L og the results -
requests and responses.

You now know what the
old system does.

Drives test cases for
the new functionality.

Client

Proxy Layer

/ Request/ \

Response

Legacy Monolith

New Microservice

-

g

Source System A

~

J

-

g

Source System B

~

J

g
4
\
\/
4
g
J
-

Source System C

g

~

J

S

You can run the new in
parallel with the old.

Route requests to botn
modules - compare the results.

't they match, #winning.

In they don’t, you can use
the “heritage” response...

And then add tests to figure out
which result is correct.

Don't be surprised it the
old system is wrong!

’,, INDEPENDENT
’ WEECE

-l Ll » r e
.-- - ra"‘ TN | ﬂ\.; __ 2

Monoliths are big ships - they
don't turn on a dime.

But that doesn’t work today.

Always be changing.

Run experiments. A/B testing.

Respond to business changes.

Deliver in days not months.

Nate Schutta vV
@ntschutta

Yes, even your company in your industry can move
away from four deploys a year to, well thousands a
month. #springone

https://mobile.twitter.com/ntschutta/status/938109379995353088

https://mobile.twitter.com/ntschutta/status/938109379995353088

Speed matters.

Disruption impacts every pusiness.

Your industry is not immune.

rReturning to our
Widget.io Monolitn...

What it our business identity a
new opportunity...

But It requires us to Iterate
and deliver in days.

The quarterly release cycle
won't cut it. What do we do?

Widget.io Monolith

N
Account
Administration
y,
N

Cart

-

_

Order Processing

~

J

-

Inventory

~

4)
Recommendation
Engine
Microservice
_),
4)
Search
Microservice
_),

Project X
Microservice

As a microservice, Project X Is
independent of the rest.

't has its own repository
and pbuild pipeline.

In other words it has an
independent lite cycle.

But we don’tju,s% get
speed to market.

Increases developer productivity!

Monoliths often have dictionary
sized getting started guides.

Build times measured in
phases of the moon.

't can take months for a new
developer to get up to speed.

What was your longest stretch to
get to productive team member?

Smaller scope === less to get
your head wrapped around.

Builds take a minute or two.

Build breaks are fixed promptly.

Testing can be far simpler.

Goodbye 80 hour manual
regression suites.

Hello fine grained tests
that run on every commit.

Forget the one-oftf
performance test.

Use the right tools tor the job!

Shared lite cycles put us at the
mercy of the longest tent pole.

We are no longer torced into a
one size fits none approach.

Fach microservice can use the
mix of tests that make sense.

Use the appropriate linting
rules and code quality scans.

Simplities the search
for fitness functions.

https://www.thoughtworks.com/insights/blog/

microservices-evolutionary-architecture

https://www.thoughtworks.com/insights/blog/microservices-evolutionary-architecture
https://www.thoughtworks.com/insights/blog/microservices-evolutionary-architecture

We can practice hypothesis
driven development.

https://www.thoughtworks.com/insights/blog/how-
implement-hypothesis-driven-development

https://www.thoughtworks.com/insights/blog/how-implement-hypothesis-driven-development
https://www.thoughtworks.com/insights/blog/how-implement-hypothesis-driven-development

"Prediction is very difticult,
especially it it's about the future.”

-Niels Bohr (attributed)

Fver debate possible solutions?

"My approach will clearly
INCrease conversions.”

How do you know?

What happens it you're wrong?

In the monolith, we had
to be conservative.

Now - we can test our hypothesis.

A/B test it!

<this outcome>

this me %r LC>

add g a

faster startup times

L8 less Ehawn 18

startup time
second.s

Can lead to useful fitness functions.

A/B used to be limited to tech
giants like Amazon and Google.

Now it is within reach for all of us!

What customer doesn’t want a
constantly improving product?

Of course tor this to work...

Focus on “paved roads.”

il

0O < > O @

m THE NETFLIX ———
TECH BLOG

Netflix Technology Blog (Follow)
Learn more about how Netflix designs, builds, and operates our systems and engineering organizations
Mar 9, 2016 - 8 min read

How We Build Code at Netflix

How does Netflix build code before it’s deployed to the cloud? While pieces of

& A Medium Corporation ¢ * T)
_ O ull =t

this story have been told in the past, we decided it was time we shared more
details. In this post, we describe the tools and techniques used to go from
source code to a deployed service serving movies and TV shows to more than

75 million global Netflix members.

Code Check-in Continuous Bake Deployment POSIY'S;F"OY Hotfix Canary Live

Integration

SPINNAKER |

GIT, NEBULA, JENKINS, BAKERY

The above diagram expands on a previous post announcing Spinnaker, our
global continuous delivery platform. There are a number of steps that need to

happen before a line of code makes it way into Spinnaker:

Code is built and tested locally using Nebula
« Changes are committed to a central git repository

« AlJenkins job executes Nebula, which builds, tests, and packages the

application for deployment
 Builds are “baked” into Amazon Machine Images

 Spinnaker pipelines are used to deploy and promote the code change

Next story

196 Q 4 §7J (@ L_\] Deploying Features Under Cove...

Here is a well worn path, we
know it works, we support it.

You build it, you own it.

Expertise grows with repetition.

Deploy early, deploy often.

You will improve.

Need to develop trust
in the process.

We need robust pipelines.

Concourse, Visual Studio Team
Services, and Jenkins can help.

Not sure how to create a pipeline?

Spring Cloud Pipelines.

https://spring.io/blog/2018/11/13/spring-cloud-
pipelines-to-cloud-pipelines-migration

https://spring.io/blog/2018/11/13/spring-cloud-pipelines-to-cloud-pipelines-migration
https://spring.io/blog/2018/11/13/spring-cloud-pipelines-to-cloud-pipelines-migration

Opinionated build/
test/stage/prod tlow.

Gives you a place to start -
modify to your hearts content.

Independent lite cycles very
under appreciated benetit.

"That’'s how we've always done it”
won't cut it anymore.

The monolith forced us to
make decisions early.

Often when we knew the |least.

For example - how much
capacity will you need?

Take worst case...double it...ado
some buffer. Then a bit more.

Just In case.

We have a six week (aka month)
lead time on all requests.

| ots of tickets.

And meetings.

And email.

And tollowup.

It was in our best interest to
over allocate resources.

Better to have it and not need it...

Difficult to add more capacity later.

Gave us single digit
resource utilization.

Of course not all traffic is
oredictable is it?

Matters were much worse if we
nad unexpected demand.

We can plan for a big new initiative.

But a shout out on social media
might double our traffic in minutes.

Things were no easier for
our operations staff.

Annual budgets make it difficult
to add capacity smoothly.

Cloud environments and
microservices tlip the script.

Today we can add, and remove,
capacity on demand.

We can wait for the last
responsible moment.

Instead of swags and guesses.

Not surprisingly, the monolith
suffered from the same issue.

There was no way to scale “just
the parts that needed it".

't was all or nothing.

Which again, meant we were
often heavily over allocated.

Harkening back to the
Widget.io example...

Odds are the order processing
system has a unique scaling needs.

Widget.io Monolith

Accou

Administration

~

Nt

Cart

Inventory

4)
Recommendation
Engine
Microservice
_ J
4)
Search
Microservice
_ y,

(

(

-

Order Processing
Microservice

~

Project X
Microservice

With a microservices approach,
we can fully utilize compute.

But, how do we know which
components need more capacity?

Monitoring to the rescue!

Monitoring is vital to a thriving
microservices architecture.

O'REILLY

Rehablhty
rngineering

HOW GOOGLE RUNS PRODUCTION SYSTEMS

Edited by Betsy Beyer, Chris Jones,
Jennifer Petoff & Niall Murphy

https://landing.google.com/sre/book.html

https://landing.google.com/sre/book.html

Four Golden Signals.

https://landing.google.com/sre/book/chapters/monitoring-

distributed-systems.html#xref _monitoring _golden-signals

https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html#xref_monitoring_golden-signals
https://landing.google.com/sre/book/chapters/monitoring-distributed-systems.html#xref_monitoring_golden-signals

| atency - how long does it take
to service a request.

Traftic - level of demand on the
system. Requests/second. I/O rate.

Errors - tfailed requests. Can be
explicit, implicit or policy tailure.

Saturation - how much of a
constrained resource is left.

lmportant to consider the
sampling frequency.

High resolution can be costly.

Aggregate data.

Number of tools from PCF to
Dynatrace to New Relic.

Spring Boot Actuator!

https://docs.spring.io/spring-boot/docs/current/

reference/html/production-ready-metrics.html

https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html
https://docs.spring.io/spring-boot/docs/current/reference/html/production-ready-metrics.html

& docs.spring.io

57. Metrics

Prev Part V. Spring Boot Actuator: Production-ready features Next

57. Metrics

Spring Boot Actuator provides dependency management and auto-configuration for Micrometer, an application metrics facade that supports numerous monitoring
systems, including:

e AppOptics
e Atllas

e Datadog

e Dynatrace
e Elastic

e Ganglia

e Graphite

e Humio

e Influx

e JMX

e KairosDB

e New Relic
e Prometheus
e SignalFx

e Simple (in-memory)
e StatsD

e Wavefront

O To learn more about Micrometer’s capabilities, please refer to its reference documentation, in particular the concepts section.

57.1 Getting started

Spring Boot auto-configures a composite MeterRegistry and adds a registry to the composite for each of the supported implementations that it finds on the classpath.
Having a dependency on micrometer-registry-{system} in your runtime classpath is enough for Spring Boot to configure the registry.

Most registries share common features. For instance, you can disable a particular registry even if the Micrometer registry implementation is on the classpath. For
instance, to disable Datadog:

management.metrics.export.datadog.enabled=false

Takes time to get monitoring right.

Do you even SRE?

Beware the metric that is
easy to measure...

Might not be meaningful. Sorry.

Also key to understana
the business drivers.

What could cause a
spike in demand?

How does that translate
to specitic services?

Be realistic!

We can’t all be a third
of internet trafficl!

Independent scalability is a
massive win. It you need it!

.

No service is an island.

"You've taken your first step
into a larger world.”

-Obi-Wan Kenobi

https://www.youtube.com/watch?v=5352y rt4NU

https://www.youtube.com/watch?v=535Zy_rf4NU

No microservice works alone.

Name implies as much!

Integrations are as old as software.

Often use bailing
twine and duct tape...

Apollo Expeditions to the Moon

CHAPTER 134

A SQUARE PEG IN AROUND HOLE

We would have died of the exhaust from our own lungs if Mission Control hadn't come up with a marvelous fix. The trouble was the square lithium hydroxide canisters from the CM would not fit the round openings of those in the LM environmental system. After a day and a half in the LM a
warning light showed us that the carbon dioxide had built up to a dangerous level, but the ground was ready. They had thought up a way to attach a CM canister to the LM system by using plastic bags, cardboard, and tape- all materials we had on board. Jack and I put it together: just like building
a model airplane. The contraption wasn't very handsome, but it worked. It was a great improvisation- and a fine example of cooperation between ground and space.

The big question was, "How do we get back safely to Earth?" The LM navigation system wasn't designed to help us in this situation. Before the explosion, at 30 hours and 40 minutes, we had made the normal midcourse correction, which would take us out of a free-return-to-Earth trajectory and
put us on our lunar landing course. Now we had to get back on that free-return course. The ground-computed 35-second burn, by an engine designed to land us on the Moon, accomplished that objective 5 hours after the explosion.

-
»

"Backroom” experts at Mission Control worked many hours to devise the fix that possibly kept the astronauts from dying of carbon dioxide. CapCom Joe Kerwin led Astronaut Swigert, step by step, for an hour to build a contraption like the one the
experts had constructed on Earth. It involved stripping the hose from a lunar suit and rigging the hose to the taped-over CM double canister, using the suit's fan to draw carbon dioxide from the cabin through the canister and expel it back into the LM as

pure oxygen.

Sometimes those 3rd party
dependencies don’t meet our SLO.

They tail.

Failures, uh find a way.

Our customers don't care why:.

VWe can use microservices to
isolate those failure cases!

You might already know where
the problem code lives.

But don't be afraid to perform
an architectural review.

| ook for failure points.

Draw up the architecture.

What happens if *this* fails?

't can't fail? Yeah it can -
what happens it it does?

Think through how our
service could fail.

"When month end tfalls on the

Super Blue Blood Moon”

't is hard. We are really good at
thinking through the happy path.

But we need to think about
the road less traveleq.

What systems does our service
talk to? How do they integrate?

s it a direct call? Through a proxy?

What are the SLOs?

Do we all have a shared
understanding of what the app?

There will be gaps in knowledge.

Feature not a bug.

We now understand the tailure
cases, what do we do about it?

How should we react?

Error message’”

Call a backup service?

Do we need to cache data?

Do we return a default answer?

"=+ KentBeck @ < o >
' ‘ﬂ @KentBeck orow v

any decent answer to an interesting question
begins, "it depends..."

10:45 AM - 6 May 2015

540 Retweets 380 Likes C s 8 3 & 3 ‘ © J

O 18 11 540) 380

https://twitter.com/KentBeck/status/59600784.6887628801

https://twitter.com/KentBeck/status/596007846887628801

The circuit breaker pattern.

https://martinfowler.com/bliki/CircuitBreaker.htm|

https://martinfowler.com/bliki/CircuitBreaker.html

Closed trip
on call / pass through breaker

call succeeds / reset count —_—
call fails / count failure
threshold reached / trip
breaker

Open
on call / fall
on timeout / attempt reset

trip
breaker

reset

Half-Open

on call / pass through
call succeeds / reset
call fails / trip breaker

Circuit breaker watches the calls.

Once they exceed a failure
threshold, the circuit is opened.

Redirects to the
tallback mechanism.

Periodically checks to see if the
service is repaired.

[t sO, circuit is closed.

You won't think of everything.

91 Nl\l 1\\ ,/.

IRV

https://qithub.com/Netflix/SimianArmy

https://github.com/Netflix/SimianArmy

Chaos engineering.

http://principlesofchaos.org

http://principlesofchaos.org

As an architect there is
one pattern | use often.

Another layer of indirection.

Sometimes it is overkill.

When was the last time you
swapped out your database”?

OK, it happens...

Same basic concept as failure
isolation. With a twist.

Now we protect our service
from things that change.

Or things that are complex to use.

Could be a vendor dependency.

Could be something large
ike an ERP system.

Or maybe just a library tor
currency conversion.

An indirection layer isolates the
things we need to change.

f we have to swap something out,
we don't update every client.

Basic proxy pattern.

Can also be an
instance of an adaptor.

Make this US plug fit into
an EU outlet for example.

We can also use it to
simplity the interaction.

Many 3rd party dependencies
solve a lot of problems.

Many of which may
NOT Matter to us.

Our microservice can facade
that interaction. Simplity it.

Nothing new here - classic
Gang of Four pattern!

These tacades can also
supply context.

Maybe a payment gateway
needs your CHQ address.

Or you need an
authorization token.

That won't change call to call.

Don’t want to code it
INto ever v client.

The facade is a natural spot
for such functionality.

Maybe we want to inject some
behavior before or after calls.

A indirection layer provides
a natural extension point.

Architecture is often defined as the
decisions that are hard to change.

Or the decisions we
wish we got right.

But we *know™ things will change!

Isn’t this approach anti agile?

Contributes to the “we're agile, we
don’t have architects” theory.

You definitely have people
making architectural decisions!

Sure hope they are
making good ones...

You'll know in a year or two.

"Our app has 4 different
Ul frameworks..."

What do we do about that?

Maybe we should
change our assumptions.

What it our architectures
expected to change”?

(OS> 91N1DaIY>IeAIRUONN|OAS//:dNY

O'REILLY"

J
onary
ectures

1
It

s
S
]

SUPPORT CONSTANT CHANGE

Build
Arch

Neal Ford, Rebecca Parsons & Patrick Kua

http://evolutionaryarchitecture.com

"An evolutionary architecture supports
guided, incremental change across

multiple dimensions.”

- Building Evolutionary Architectures

https://www.youtube.com/watch?v=535Zy_rf4NU

Microservices can provide
additional flexibility.

=

B -

POLYQ
YGLOT Te€CH STACKS

oé

Monoliths forced us to

standardize on a toolkit.

Many organizations described
themselves by their stack.

As in “we're a Java/Ruby/.NET shop”

Bring me a problem!

There are positives to
this approach.

Teams develop deep expertise.

People can shift teams to cross
oollinate and balance workloads.

Simplities the hiring and
training processes.

Ops can focus on the
primary environment.

But one size doesn’t fit all.

There are, of course, downsides.

Currency is usually constrainea
py the slowest moving app.

You can’t have nice things
because of the Wombat app.

When we did upgrade, odds
are it would take months.

And the “new” version would
already be outdated.

Oft course very few orgs were
really that homogenous.

A merger or acquisition ===
another tech stack.

Cloud computing removes the one
stack to rule them all constraint.

We actually €aw spin up
multiple different stacks.

Polyglot programming isn't just
a pipe dream anymore!

http://nealtford.com/memeagora/2006/12/05/Polyglot Programming.html

http://nealford.com/memeagora/2006/12/05/Polyglot_Programming.html

4 U NP SN
M L o e Dbl B,

p.v.mvz vl

AVE BN B

. .v .\. \
A.lvu\.w

oy e
N

PR e e

g ...&4-;
g . i

X . 9 -
T Oy T W YT LMY A T TR e g ..

‘
TE

. P L

Pick the right tool for the job!

We aren’t torced down the
square peg round hole path.

But.

There is always a but.

We have to avoid tech sprawil.

t's great right? Each team can use
just the right tool for the job!

Every developer will have their
favorite tools, languages, etc.

Teams will have their pipeline
oreferences, meaningful metrics...

| eads to an awtul lot of
ways to do a given thing.

How do we staff up? Go, Haskell,
Java, .NET, C++, Ruby, Python?

How many libraries will we
need to support all of that?

Can we stay current?

O
©
il

heartbleed.com

Cv

The Heartbleed Bug

The Heartbleed Bug is a serious vulnerability in the popular OpenSSL

cryptographic software library. This weakness allows stealing the
information protected, under normal conditions, by the SSL/TLS
encryption used to secure the Internet. SSL/TLS provides communication
security and privacy over the Internet for applications such as web, email,
instant messaging (IM) and some virtual private networks (VPNSs).

The Heartbleed bug allows anyone on the Internet to read the memory of
the systems protected by the vulnerable versions of the OpenSSL
software. This compromises the secret keys used to identify the service
providers and to encrypt the traffic, the names and passwords of the
users and the actual content. This allows attackers to eavesdrop on
communications, steal data directly from the services and users and to

impersonate services and users.

What leaks in practice?

We have tested some of our own services from
attacker's perspective. We attacked ourselves from
outside, without leaving a trace. Without using any
privileged information or credentials we were able
steal from ourselves the secret keys used for our
X.509 certificates, user names and passwords, instant
messages, emails and business critical documents and
communication.

How to stop the leak?

As long as the vulnerable version of OpenSSL is in use
it can be abused. Fixed OpenSSL has been released
and now it has to be deployed. Operating system
vendors and distribution, appliance vendors,
independent software vendors have to adopt the fix
and notify their users. Service providers and users
have to install the fix as it becomes available for the
operating systems, networked appliances and
software they use.

O ®

& nbcnews.com

BUSINESS > CONSUMER

Equifax Hackers Exploited Months-Old

BUSINESS

SEP 142017, 3:21 PM ET

SHARE
f Share

¥ Tweet
5 Email

&4 Print

Flaw

by BEN POPKEN

Equifax announced late Wednesday that the source of the hole in its defenses
that enabled hackers to plunder its databases was a massive server bug first
revealed in March.

For the rest of the IT world, fixing that flaw was a "hair on fire moment," a
security expert said, as companies raced to install patches and secure their
servers. But at Equifax, criminals were able to pilfer data from mid-May to July,
when the credit bureau says it finally stopped the intrusion.

» Equifax, Software Company Blame Each Other for Security fv o
Breach 1:52

"We know that criminals exploited a U.S. website application vulnerability,"
Equifax said in an update on its website Wednesday night. "The vulnerability
was Apache Struts CVE-2017-5638." Equifax said it was working with a leading
cybersecurity firm, reported to be Mandiant, to investigate the breach.
Mandiant declined an NBC News request for comment.

Related: The One Move to Make After Equifax Breach

The Apache Software Foundation, which oversees the Apache Struts project,
said in a press release Thursday that a software update to patch the flaw was

TRAVEL ECONOMY YOURBUSINESS VELSHI & RUHLE

FROM THE WEB Sponsored Links

Find Out In One Minute If You Pre-Qualify
For A Citi Card

Citi

Why These 10 SUVs are the Cream of the
Crop

Kelley Blue Book

by Taboola [>
MORE FROM NBC NEWS

@ a=es=l Il el |

& techcrunch.com

T

Most of the Fortune 100 still use
flawed software that led to the
Equifax breach

Zack Whittaker

Dzackwhittaker

—
N

—
.

" '.-'/-""l"-\ N ™
— ¥

. . -
.-~ <
Y .
-t &
-
» - 7 B
»

=
.

g

| . ‘.‘_______.‘

Almost two years after Equifax’s massive hack, the majority of Fortune 100

companies still aren’t learning the lessons of using vulnerable software.

In the last six months of 2018, two-thirds of the Fortune 100 companies
downloaded a vulnerable version of Apache Struts, the same vulnerable server
software that was used by hackers to steal the personal data on close to 150
million consumers, according to data shared by Sonatype, an open-source
automation firm.

That’s despite almost two years’ worth of patched Struts versions being
released since the attack.

Sonatvpe wouldn’t name the Fortune 100 firms that had downloaded the

O N O @

& cnet.com

@ REVIEWS NEWS VIDEO HOW TO SMART HOME CARS DEALS DOWNLOAD

SECURITY / LEER EN ESPANOL

Exactis said to have exposed 340 million
records, more than Equifax breach

We hadn't heard of the firm either, but it had data on hundreds of millions
of Americans and businesses and leaked it, according to Wired.

BY ABRAR AL-HEETI / JUNE 28, 2018 10:14 AM PDT

f v F & = R

- - 2018 MKC
@ ' - - Introduce yourself
to a new Lincoln.

CURRENT OFFERS

BUILD & PRICE
Roll over for offer disciamer

Worst hacks of the year

Q

@

JOIN/SIGN IN]

bbc.com

E E Q Sign in News Sport Weather Shop Reel Travel More - Search Q

Video World US & Canada UK Business Tech Science Stories Entertainment & Arts Health More ~

THE STRANGE DOLLS # 2 Y
CESREEL THAT COME TO LIFE @ ~|~ fF"

"y M L .

Technology

Marriott hack hits 500 million Starwood Top Stories

gueSts Tabloid's owner defends Jeff
Bezos report

© 30 November 2018 f © ¥ [< Share AMI, owner of a US magazine accused of

blackmail by Amazon's founder, says it
acted in good faith.

@® 40 minutes ago

What US ruling may mean for Roe
v Wade

@® 2 hours ago

Russia probe chief grilled by
lawmakers

© 24 minutes ago

BEME REEL ;?“
DID BONDGIRL "2 .

DIE AFTERBEING =*
PAINTED GORD?

Sheraton is one of Marriott's brands

The records of 500 million customers of the hotel group Marriott International > WATCH NOW

have been involved in a data breach.

The hotel chain said the guest reservation database of its Starwood division had Feat
been compromised by an unauthorised party. ealures

It eaid an internal invectiaation forind an attacker had been able to accece the _

't cannot be a free for all.

You will need some guardrails.

"Use any language as long
as it runs on the JVM."

Pick from these 3 tlavors. Won't
work for you? Let's talk.

Focus on “paved roads.”

il

0O < > O @

m THE NETFLIX ———
TECH BLOG

Netflix Technology Blog (Follow)
Learn more about how Netflix designs, builds, and operates our systems and engineering organizations
Mar 9, 2016 - 8 min read

How We Build Code at Netflix

How does Netflix build code before it’s deployed to the cloud? While pieces of

& A Medium Corporation ¢ * T)
_ O ull =t

this story have been told in the past, we decided it was time we shared more
details. In this post, we describe the tools and techniques used to go from
source code to a deployed service serving movies and TV shows to more than

75 million global Netflix members.

Code Check-in Continuous Bake Deployment POSIY'S;F"OY Hotfix Canary Live

Integration

SPINNAKER |

GIT, NEBULA, JENKINS, BAKERY

The above diagram expands on a previous post announcing Spinnaker, our
global continuous delivery platform. There are a number of steps that need to

happen before a line of code makes it way into Spinnaker:

Code is built and tested locally using Nebula
« Changes are committed to a central git repository

« AlJenkins job executes Nebula, which builds, tests, and packages the

application for deployment
 Builds are “baked” into Amazon Machine Images

 Spinnaker pipelines are used to deploy and promote the code change

Next story

196 Q 4 §7J (@ L_\] Deploying Features Under Cove...

Here is a well worn path, we
know it works, we support it.

You build it, you own it.

Sprawl tends to exacerbate our
accumulation of technical debit.

The key word here is micro.

As in small.

We can debate the meaning of
small until the cows come home.

Partial to “anything we can
rewrite in 2 weeks or less”.

't we chose poorly - we lost
two weeks. An iteration.

We can recover from that.

More time === more invested.

Makes us less likely to change
course. Even it we should.

Microservices frees us to
choose the right tech!

But we must weigh
the pros and cons.

"With great power comes
great responsipility.”

You build it, you run it.

Avoid the temptation of
resume driven design.

Microservices really do ofter
some impressive benetits.

But they come at a price.

Don’t pay the complexity tax unless
you get something in return.

In other words, no, not everything
should be a microservice!

Use them were they make sense.

Use them where they add value.

f you need one (or more) of the
orinciples, go forth and prosper!

It not...well there's
always serverless.

Good luck!

Thanks!

e %, N\ I'maSoftware Presentation Modeling for
Thinking 7' Architect, Patterns Software

Ve g NowWhat? = ewdmdavese - Architects Nathaniel T. Schutta

with Nate Shutta with Nate Shutta

OREILLY OREILLY" OREILLY"

N : F“

1 - 4 e 3
=2 f ‘:4 - Security Diagrams. (

& >

> | N 7/ & \ 1 s N

J ‘] L

2

“\. \

" ntschutta.io

OREILLY®

Lead Technical Change Within
Your Engineering Team

Nathaniel Schutta

March 2 & 3, 2020

From developer to software architect
Presented by Nathaniel Schutta

& springonetour.io

(SpringOne TOUR) o Pivotal

Cloud-Native Java From the Source

The SpringOne Tour brings the best Cloud-Native Java content from our flagship
conference directly to you. In 2 days, you’ll learn about both traditional monolithic
and modern, Cloud-Native Java from the source. Experience valuable facetime with expert
Pivotal speakers in both traditional presentation and informal Pivotal Conversations

about modern Application Development, DevOps, CI/CD, Cloud and more.

